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In this study, the synchronization between Chua and modified Chua oscillators is investigated by 

means of the passive control method. First, the Chua and cubic Chua oscillators are described and 

defined as a set of differential equations. Their chaotic time series and phase portraits are 

demonstrated. Then, the passive controllers are constructed for the synchronization. The global 

asymptotical stability of errors between the Chua oscillators is ensured with the Lyapunov function. 

Afterwards, numerical results are demonstrated to confirm the theoretical analysis. They have also 

shown that the passive controllers are effectively used for synchronizing two different Chua 

oscillators. 
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Introduction 

Since Lorenz introduced the first chaotic attractor in 1963 [1], the investigations on chaos have 

become an important subject in the engineering area and many chaotic attractors have been 

discovered. A new three-dimensional chaotic Rössler system was proposed in 1976 [2]. Chua’s 

double-scroll attractor was presented in 1984 [3]. Sprott focused on simpler chaotic systems in 1994 

and uncovered 19 distinct chaotic flows which have either five terms and two nonlinearities or six 

terms and one nonlinearity [4]. Chen attractor was proposed by Chen and Ueta in 1999 [5]. Lü et al. 

discovered a new chaotic system, which represents the transition between the Lorenz and Chen 

systems, in 2002 [6]. Then, Lü et al. suggested a generalized form of the Lorenz, Chen and Lü 

systems called unified chaotic system [7]. In recent years, several new chaotic attractors have also 

been proposed [8–10]. 

Besides new chaotic attractors, the synchronization of chaotic systems becomes an important task 

and has received increasing attention from researchers due to their potential applications especially in 

secure communication [11, 12]. The idea of synchronizing two identical chaotic systems was 

introduced by Pecora and Carroll in 1990 [13]. Then, several methods have been successfully applied 

to synchronize the chaotic systems such as active control [14], passive control [15–19], sliding mode 

control [20], impulsive control [21], backstepping design [22] and so on. Among them, passive 

control is a significant chaos control method. It has been used for the synchronization of Chen [15], 

unified [16], Rikitake [17], between Rössler and Genesio-Tesi [18], and many other chaotic systems 

[19]. 
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Introduced by Leon O. Chua, Chua’s circuit is a simple electronic circuit that consists of one 

linear resistor, two capacitors, one inductor, and one nonlinear resistor. Its simplicity and chaotic 

phenomena make the Chua oscillator a well-known circuit. Its dynamical behaviours and properties 

have been extensively investigated in many papers [23–25]. Some modified versions of Chua’s 

circuits are also proposed [26, 27]. The control and synchronization of Chua systems have received 

lots of attentions from researchers. Recently, the synchronization of Chua oscillators is implemented 

with active control [28], adaptive control [29], sliding mode control [30], fuzzy control [31], 

impulsive control [32], and backstepping design [33] methods. According to the literature review, 

there is no passive control approach for the synchronization of Chua oscillators. In this paper, the 

synchronization between two different chaotic Chua oscillators is applied with the passive control 

method. 

System Descriptions 

As seen in Fig.1, the Chua’s circuit contains 5 circuit elements; inductance L, resistance R, two 

capacitances C1 and C2, and three-segment nonlinear resistor g [3]. 

�

Fig. 1. The Chua’s circuit. 

The Chua’s system is described by the following dimensionless form 
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where α  > 0 and β  > 0 are the system parameters determined by the particular values of the 

circuit components; f(x) is the function describes the electrical response of the nonlinear resistor; x, y, 

and z are the state variables represent the voltages across the capacitors C1 and C2, and the intensity of 

the electrical current in the inductor L, respectively. The f(x) function depends on the particular 

configuration of components. It is generally considered as  
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Chua’s circuit exhibits chaotic phenomena when the parameters are selected as α  = 9,β  = 100/7, a = 

8/7, and b = 5/7 with the initial condition (0, 0, 0.6) [3]. The time series of Chua oscillator are 

demonstrated in Fig. 2, the 2D phas 

portraits are demonstrated in Fig. 3, and the 3D phase plane is demonstrated in Fig. 4. Chua oscillator 

is also known as “double scroll” because of its shape in the (x, y, z) space. 
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    (a) 

�

    (b) 

�

    (c) 

Fig. 2. Time series of Chua oscillator for (a) x signals, (b) y signals, (c) z signals. 

�

    (a) 

�

    (b) 
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�

�

    (c) 

Fig. 3. 2D phase portraits of Chua oscillator for (a) x–y phase plot, (b) x–z phase plot, (c) y–z phase plot. 

�

Fig. 4. 3D phase plane of Chua oscillator. 

Hartly proposed a modified Chua oscillator in 1989 [26]. A cubic nonlinearity is used in place of the 

piecewise-linear nonlinearity of Chua’s circuit. It changes the dynamics of system and the bifurcation 

structure a little. The cubic Chua system is described by 

,

,

)),2(
7

1
( 3

yz

zyxy

xxyx

β

α

−=

+−=

−−=

�

�

�

� � � � � � � (3)�

where α  > 0 and β  > 0 are the system parameters; x and y are the voltages across the two capacitors; 

and z is the current through the inductor. The cubic Chua’s circuit system displays chaotic behaviour 

when the parameters are considered as α  = 10 and β  = 100/7 with the initial condition (0.3, 0, 0) 

[34]. The time series, the 2D phase portraits, and the 3D phase plane of cubic Chua oscillator are 

demonstrated in Fig. 5, Fig. 6, and Fig. 7, respectively. 
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    (a) 
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    (b) 
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    (c) 

Fig. 5. Time series of cubic Chua oscillator for (a) x signals, (b) y signals, (c) z signals. 
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�

    (c) 

Fig. 6. 2D phase portraits of cubic Chua oscillator for (a) x–y phase plot, (b) x–z phase plot, (c) y–z phase plot. 

�

Fig. 7. 3D phase plane of cubic Chua oscillator. 

Synchronization 

In this section, the synchronization of two different Chua oscillators with unknown parameters is 

applied by using a passivity-based control method. Two chaotic Chua systems are taken where the 

drive Chua oscillator denoted by the subscript 1 controls the response cubic Chua oscillator which is 

denoted by subscript 2. The drive and response Chua systems are defined as follows: 
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�

where u1 and u2 in Equation (5) are the control functions to be determined. In order to obtain the 

control functions for synchronization, the drive system is subtracted from the response system. The e1, 

e2, and e3 state errors between cubic Chua chaotic system (5) that is to be controlled and the 

controlling Chua chaotic system (4) is defined as 
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It leads to 
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The system (7) is called the error system. The synchronization problem is to ensure the error 

system (7) asymptotically stable at the zero equilibrium point. By assuming that the state variable e1 is 

the output of the system and supposing Z1 = e2, Z2 = e3, Y = e1, Z = [Z1 Z2]
T
, then system (7) can be 

denoted by normal form: 
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The passive control theory has the following generalized form: 
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and according to system (8): 
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The storage function is chosen as 
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In order to obtain derivative of W(Z) as negative, the control function u2 is considered by: 
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According to Equation (10), by taking the derivative of W(Z) 
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Since 0)( ≥ZW  and 0)( ≤ZW� , it can be concluded that W(Z) is the Lyapunov function of 

)(0 Zf  and that )(0 Zf  is globally asymptotically stable [17]. So, the zero dynamics of the error 

system (8) is stable based on the Lyapunov stability. The synchronized system can be equivalent to a 

passive system and globally asymptotically stabilized at its zero equilibrium by the following state 

feedback controller [16]: 
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Accordingly, it is determined for the error system (8) as 
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where α  is a positive constant and v is an external input signal. By taking back Z1 = e2, Z2 = e3, Y 

= e1 conversions, the control functions become 

.

,))2(
7

1
())((

222112

122

3

22211111

eyyu

veexxyxfxyu

−+−=

+−−−−−−−=

ββ

ααα
� �  !&#�

Hence, the synchronization between Chua and cubic Chua oscillators with unknown parameters 

is achieved by means of passive control method. 

Numerical Simulations 

In this section, computer simulations are performed to show the synchronization between Chua 

oscillator and cubic Chua oscillator with the passive control method. The numerical analysis is carried 

out using Runge-Kutta method of order 4 with variable time step. The parameters of Chua’s circuit 

are taken as 1α  = 9, 1β  = 100/7, a = 8/7, and b = 5/7; the initial condition is (0, 0, 0.6). The 

parameters of cubic Chua oscillator are taken as 2α  = 10 and 2β = 100/7; the initial condition is (0.3, 

0, 0). The passive controller parameters are chosen as α  = 10 and v = 0. In order to present the 

chaotic trajectories before and after the control law is applied, the controllers are activated at t = 25. 

The simulation results of synchronization are demonstrated in Fig. 8, and the error signals are 

demonstrated in Fig. 9. 
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Fig. 8. The time response of states for the synchronization between chaotic Chua and cubic Chua oscillators 

when the passive controllers are activated at t = 25 for (a) x signals, (b) y signals, (c) z signals. 

�

Fig. 9. The time response of error signals for the synchronization between chaotic Chua and cubic Chua 

oscillators when the passive controllers are activated at t = 25. 
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As expected, Fig. 8 from Matlab–Simulink outputs shows that the passive controllers have 

achieved the non-identical synchronization of chaotic Chua oscillators. The error signals that are 

shown in Fig. 9 converge asymptotically to zero. Therefore, all the analytical results have been 

confirmed by the computer simulations. When the controllers are activated at t = 25, the 

synchronization is obtained at t � 32 with the passive controllers. Hence, the passive controllers are 

appropriate for the synchronization of two different Chua oscillators. 

Conclusion 

In this paper, the passive control method is proposed for the synchronization between chaotic Chua 

and cubic Chua oscillators with unknown parameters. Based on the properties of passivity, the passive 

controllers have been constructed to realize the synchronization. Simulation results show that the 

passive controllers are able to synchronize the chaotic motion of cubic Chua oscillator to the chaotic 

motion of Chua’s circuit. So, the theoretical analyses are confirmed. Numerical simulations also show 

that the proposed passive control method is effective for the non-identical chaos synchronization of 

Chua oscillators. 
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