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In this paper, a single state controller is designed for the synchronization of two identical chaotic supply 

chain systems. A Lyapunov function is used for achieving the global asymptotical stability of 

synchronization errors by ensuring a negative value of its time derivative. Computer simulation results 

are demonstrated to validate the theoretical analysis. Furthermore, they show that the proposed 

controller is very effective for the synchronization of chaotic supply chain systems. 
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Introduction 

Some of the nonlinear systems include chaotic behaviours in their dynamics. In 1963, when Edward 

Lorenz was using a model for fluid conviction that describes some features of the atmospheric processes, 

he noticed that this differential system has very sensitive dependence on initial conditions [1]. It was the 

first time chaos has been observed mathematically. Since then, chaos has been intensively studied and the 

Lorenz attractor has become the famous chaotic system. In addition, new chaotic systems have  

been discovered in a variety of fields including physics [2], chemistry [3], ecology [4], biology [5] and 

finance [6]. 

The chaotic systems also have an infinite number of different periodic trajectories. Sometimes, it is 

desired that two dynamical systems have the same values. Even if they are identical, the chaotic systems 

can lead to completely different trajectories due to the slight errors. So, the synchronization of them is 

required. At first, it was believed that the chaotic systems cannot be synchronized because of the 

sensitivity on the initial conditions. In 1990, Pecora and Carroll successfully applied the synchronization 

of two identical chaotic systems which are starting from different initial conditions [7]. Afterwards, chaos 

synchronization has also become an important task. Several effective control methods are proposed for 

the chaos synchronization. For instance, active control [8], sliding mode control [9], passive control [10], 

backstepping design [11] and impulsive control [12] are used for the synchronization of chaotic systems. 

In these methods, the stability of synchronization error system is generally established with a Lyapunov 

function. The direct Lyapunov stability theory can also be used for the synchronization of chaotic 

systems. 
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The supply chain can be defined as “a way to envision all steps needed from beginning to end in 

order to deliver products or services to the customer” [13]. The supply chain involves all stages from 

beginning to end; which in the manufacturing industry is often presented as “from raw materials to 

distributed products or services” [13, 14]. The receipt of raw materials from the manufacturing processes 

to the distribution and the delivery of products to customers includes enterprise organizational functions 

[15]. The supply chain system also enables the manufacturing enterprise organizations to achieve 

 higher quality products, lower inventory quantities, and better customer services. Researchers have  

paid attentions to the special issues of supply chain system analyzing, designing and modelling in recent 

years. 

There are some unpredictable factors in the supply chain dynamics and they impact the effectiveness 

of the system. Supply chain planning, managing and scheduling may lead to some nonlinear behaviours in 

system components, production and inventory levels under different stages. The demand forecast 

updating, price fluctuation, order batching, rationing and shortages are the major issues [14]. In addition, 

the usage of demand processing and non-zero lead times are the other important topics in the supply chain 

management [16]. However, they have resulted in nonlinearities and chaotic activities [16–22]. For 

example, the bullwhip effect, which is one of the undesirable behaviours in the supply chain system, 

causes it as a chaotic system [23]. 

Chaotic cases at inventory levels and in production control mechanisms are the unwanted problems. 

The synchronization of supply chain systems leads the correct demand information might be retrieved by 

enterprise resource planning system on time even if it has chaotic trajectories. There are a few studies 

about the synchronization of chaotic supply chains in the literature. In 2006, the radial basis function 

neural networks were used for the chaos synchronization of bullwhip effect in a supply chain system [23]. 

The synchronization of chaos in supply chains was achieved with the adaptive feedback control model to 

mitigate the effects due to uncertainties and perturbations in 2009 [24]. Recently, the synchronization of 

chaotic supply chain systems has been applied by means of the active control [25] and adaptive neuro-

fuzzy inference system methods [26]. In this study, the synchronization of two identical chaotic supply 

chain systems with a single state controller is investigated. The Lyapunov stability analysis is used for 

providing the stability of synchronization errors. Numerical simulations are presented to verify the 

effectiveness of synchronization results.  

Chaotic Supply Chain System 

A supply chain system contains three levels: end customers, distributors, and producers. The dynamic 

equations of a supply chain system can be described by [24]: 
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where x, y and z are demand, inventory and produced quantities; m, n, r and k are the delivery efficiency 

of distributors, the ratio of customer demand, distortion coefficient and safety stock coefficient; m, n, r 

and k are the linear distortions of system parameters m, n, r and k; d1, d2 and d3 are nonlinear 

perturbations in the different levels of system from outside, respectively [24]. 

With specific values set at m = 10, n = 9, r = 28, k = –5/3, m = 0.1, n = 0.1, r = 0.2, k = 0.3, d1 = 

0.2sin(t), d2 = 0.1cos(5t) and d3 = 0.3sin(t), the dynamic behaviour of supply chain system (1) exhibits an 

irregular motion with the initial conditions of (x, y, z) = (0, 0.11, 9). In Fig. 1, Fig. 2 and Fig. 3, the 

trajectories of supply chain system (1) are shown as the states of chaotic motion in time series, two-

dimensional phase portraits and three-dimensional phase plane, respectively. 
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      (a)       (b) 

 
    (c) 

Figure 1. Chaotic supply chain system in time series (a) x, (b) y, (c) z signals 

      (a)       (b) 

 
    (c) 

Figure 2. Chaotic supply chain system in 2D phase portraits (a) x–y, (b) x–z, (c) y–z phase plot 
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Figure 3. Chaotic supply chain system in 3D phase plane 

Synchronization 

For the synchronization, two coupled chaotic supply chain systems are considered with different initial 

conditions. The drive and response systems are denoted by subscript 1 and subscript 2, respectively. They 

are expressed as follows: 
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where u in system (3) is the control function to be determined. To obtain the control function for the 

synchronization, the drive system is subtracted from the response system. So, the state errors e1, e2, and e3 

are defined as 
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This leads to 
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The system (5) is called the error system. Some terms of system (5) can be written as  
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This implies that the error system (5) can be rewritten as 
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Now, the goal is to ensure the error system asymptotically stable at the origin for the synchronization. Let 

the Lyapunov function for system (7) is selected as follows: 
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It is clear that Lyapunov function (8) has positive definite and it is equal to zero at the equilibrium of 

system (7). Furthermore, the time derivative of the Lyapunov function V is 
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There are many alternatives for the u controller. If it is simply considered as 
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then V  becomes 
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where it has negative definite due to the parameter values n = 9, n = 0.1, k = –5/3, and k = 0.3. As a 

consequence, from Lyapunov direct method, the zero solution of the system (7) is asymptotically stable 

with the choice of Eq. (10). This implies that the synchronization of two identical supply chain systems is 

achieved. 

Numerical Simulations 

In this section, the synchronization of two identical chaotic supply chain systems is performed with the 

computer simulations and the results are demonstrated. In the simulations, fourth-order Runge–Kutta 

method is used with the variable step size. To ensure the chaotic behaviour of supply chain systems, the 

parameters are taken as m = 10, n = 9, r = 28, k = –5/3, m = 0.1, n = 0.1, r = 0.2 and k = 0.3. The 

initial values of supply chain systems are considered as (x1, y1, z1) = (0, 0.11, 9) and (x2, y2, z2) = (24, 20, 

28). The controller is activated at t = 10 and t = 20, and the synchronization results are shown in Fig. 4 

and Fig. 5, respectively. In Fig. 6, the error signals of synchronizations are shown. 

As expected, the synchronization of chaotic supply chain systems are achieved in Fig. 4 and Fig. 5 

after the controller is turned on, and the error signals which are demonstrated in Fig. 6 converge 

asymptotically to zero. Hence, these simulations confirm the validity of the proposed control technique. 

When the controller is activated at t = 10 and t = 20, the synchronization is completely observed at t  12 

and t  22, respectively. So, the proposed Lyapunov function based single state controller is very effective 

for the synchronization of two identical chaotic supply chain systems. 
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      (a)       (b) 

 
    (c) 

Figure 4.  Chaotic supply chain systems in time series with the controller is  

activated at t = 10 (a) x, (b) y, (c) z signals 

      (a)       (b) 

 
    (c) 

Figure 5. Chaotic supply chain systems in time series with the controller is  

activated at t = 20 (a) x, (b) y, (c) z signals 
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     (a)       (b) 

Figure 6. The error signals of synchronization in time series with the controller is activated at (a) t = 10, (b) t = 20 

Conclusion 

In this paper, the synchronization of two identical chaotic supply chain systems is applied with a single 

state controller. Nowadays, it is aimed that supply chain management systems must be effective. But it is 

difficult to operate especially when they have distortions, nonlinear and chaotic behaviours. By 

synchronizing, the correct demand information can be retrieved by enterprise resource planning system on 

time and the effectiveness of system can be improved with appropriate synchronization and control 

mechanisms. Based on the Lyapunov stability theory, a controller is constructed and added to the 

response supply chain system for synchronization. Numerical simulations validate the theoretical 

analysis. Simulations also show that even through only a single state controller is used, the 

synchronization of chaotic supply chain systems is achieved in an appropriate time period. 
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